
- 73 -

4  SYSTEM ANALYSIS

Chapter 3 analyzed the occurrence due to a vulnerability in Citrix software. This
occurrence was not an isolated one. The chapter also analyzed similar incidents where
vulnerabilities in software led to security breaches at organizations. In some cases, this
directly impacted people's security and safety. This illustrates that vulnerabilities in
software are not isolated incidents. They are symptoms of a larger problem. The
occurrences reveal a common thread: organizations and the people who depend on
them are exposed to digital unsafety. Unknowingly they use software that is vulnerable.
In many cases, warnings do not reach them and organizations do not always have the
resources to remedy the vulnerability.

Chapter 4 analyzes the problem at the system level. In so doing, we distinguish between
the process in which software is developed; the process in which organizations select
certain software to purchase and put into use; and the processes that take place after a
vulnerability in the software is found (incident response). In addition, we address how
stakeholders, such as manufacturers, organizations that use software, and the government
as policymaker, learn from digital incidents. We also address the role that the international
context plays in managing insecurity and unsafety due to vulnerabilities in software.

4.1	 Producing and releasing software on the market

Software fulfils a crucial role in the functioning of digital systems within organizations.
Software is for example used to gain access to the company network from home, and as
such forms the link between the internal and external network (Internet). Products of this
kind therefore play an essential role in safeguarding cybersecurity.

Vulnerabilities are always inherent in software products, some of which lead to major
safety risks. These risks are real and there have already been several examples, with
disruptive consequences for public services. A vulnerability in a software product for
example (indirectly) led to serious disruptions in service provision by Dutch municipalities
(it was no longer possible to pay supplementary benefits to local residents) and a hospital
(patients were no longer able to access their personal files and no information could be
exchanged with other hospitals). Chapter 3 described examples of vulnerabilities in such
products and their consequences. In this section we discuss how it is possible that
software contains vulnerabilities and how manufacturers estimate the risk of these
vulnerabilities and their consequences, and take measures to prevent or limit those
consequences.

In 4.1.1 we describe the factors that explain why vulnerabilities can emerge in software
and we describe the incentives that affect those factors. In 4.1.2 we then outline the
measures taken by manufacturers to discover vulnerabilities, both before and after the
software is released, the difficulties this process involves, and the dilemmas the

- 74 -

manufacturers face. Finally, in 4.1.3 we consider the patching of vulnerabilities and the
manufacturer’s role in incident response.

4.1.1	 Preventing vulnerabilities in the lifecycle of software
Vulnerabilities can arise at any point in the lifecycle of a software product. For example, a
vulnerability can emerge during the initial development of a new product, but equally
during the renewal or improvement of existing software, in the form of an upgrade, or
sometimes even as a consequence of fixing another vulnerability. Interviews with
manufacturers and literature studies show that a number of factors contribute to the
emergence of vulnerabilities during the lifecycle of a product. Below we discuss a number
of factors.

Software products have a history
The first factor relates to the history of the development of software products, which is
sometimes long and complex. Over time, manufacturers add new functionalities to
existing software packages on multiple occasions, therefore building on an existing
product. In certain cases, the original code of the software package (the foundation) is
more than twenty years old. Changing needs and increasing digitization in society mean
that software is taking on a different role. As a result, a software product is never finished.
Manufacturers respond to this time and again by using existing platforms and adding
extra functionalities, or reusing existing components.

Because manufacturers repeatedly add additional functionalities, the number of lines of
code increases, and the software becomes more complex.108 It is not uncommon for a
software product to consist of more than one million lines of code.109 Interviews and
literature studies show that even with an extended framework for product development,
safely maintaining such huge quantities of code is a significant task. Manufacturers
therefore oftentimes restrict themselves to fixing the specific vulnerability as published in
the CVE.110 Dealing with the underlying cause in the foundation of the product
(programming language, components, architecture) can require the complete rebuilding
of the product. Manufacturers consider this to be too costly. Large software companies
are often stock exchange-quoted companies and financial considerations play a role.
However, the development history of software sometimes means that a product has
grown in such a way that fixing a vulnerability is nothing more than tackling symptoms. In
reality, a complete revision of the basis of the product may be needed to truly solve the
(safety) problem.

108	 https://www.extremetech.com/computing/259977-software-increasingly-complex-thats-dangerous.
109	 https://www.informationisbeautiful.net/visualizations/million-lines-of-code/.
110	 Common Vulnerabilities and Exposures. A public list of known weaknesses in software. The list appears on

https://cve.mitre.org. (Source: Cybersecurity Alliantie, Cybersecurity Woordenboek, 2019, https://www.
cybersecurityalliantie.nl/binaries/cybersecurityalliantie/documenten/publicaties/2019/09/30/cybersecurity-
woordenboek/VCNL-Woordenboek-2eDruk-webversie-Final-2.pdf).

https://www.extremetech.com/computing/259977-software-increasingly-complex-thats-dangerous
https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://cve.mitre.org
https://www.cybersecurityalliantie.nl/binaries/cybersecurityalliantie/documenten/publicaties/2019/09/30/cybersecurity-woordenboek/VCNL-Woordenboek-2eDruk-webversie-Final-2.pdf
https://www.cybersecurityalliantie.nl/binaries/cybersecurityalliantie/documenten/publicaties/2019/09/30/cybersecurity-woordenboek/VCNL-Woordenboek-2eDruk-webversie-Final-2.pdf
https://www.cybersecurityalliantie.nl/binaries/cybersecurityalliantie/documenten/publicaties/2019/09/30/cybersecurity-woordenboek/VCNL-Woordenboek-2eDruk-webversie-Final-2.pdf

- 75 -

Programming language
A second explanatory factor that can also influence the emergence of vulnerabilities is
the programming language used. The programming language currently most commonly
used (C/C++) is recognized as being ‘unsafe’, because it allows programmers considerable
leeway to make mistakes.111

Manufacturers have access to a series of general tools for eliminating whole classes of
vulnerabilities, or mitigating their effects. Around half of the security breaches over the
past few years have been related to vulnerabilities in memory security, that can be
rectified by writing code in more secure languages such as Rust, or by subjecting the
existing C/C++ code to verification tools.112

According to research, it is unattractive for manufacturers to protect software
development against vulnerabilities: it makes the software slow, and during the
programming process, the programmers receive so many (sometime erroneous) error
messages that they switch off the security system.113

It is also not possible with all programming languages to use tools to detect vulnerabilities
during the development process.114 In the Citrix case, for example, the fact that the
programming language Perl was barely supported if at all by these scanning tools played
a clear role. See also 4.1.2 on what manufacturers do to discover vulnerabilities, and the
obstacles they come across.

Use of standard components
The third factor is the use of standard components. When developing software,
manufacturers make regular use of existing (open source) software components.
Examples are the Apache and NGINX HTTP server, that are often used as the basis for
software with web functionality. A manufacturer can also reuse components from their
own existing software or from software that was previously made by an acquired
company..

By reusing other components and the associated code, the manufacturer also
incorporates all (undiscovered) vulnerabilities contained in that code.115 Once the code
has been integrated in the developer’s own package, it takes a great deal of effort to

111	 The basis for the SSL VPN (a virtual private network that uses the SSL or TLS protocol) and much other software is
C/C++. Programming languages like C enable programmers to write code at a higher level of abstraction. This
refers to the proximity of the programming language to the hardware. At a higher level of abstraction, developing
software becomes simpler and more understandable than at a lower level, whereby more specific machine
instructions are needed. However, that too can lead to errors. C is a programming language which is recognized as
being ‘unsafe’, because in this language, working memory management is carried out manually (Kroes, T., How to
Keep Your Memory Safe and Your Software Fast, 2020; AG Connect, Einde van de oneindige reeks softwarefouten
in zicht, 2021). This is error sensitive and the majority of SSL VPNs use their own additions to existing programming
languages. This can lead to simple memory errors; the most common source of software bugs and an important
area of attack for attackers (see https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-
memory-safety-issues). Nonetheless, C remains one of the most widely used programming languages.

112	 Anderson, R., Security Engineering, 2020.
113	 Kroes, T., How to Keep Your Memory Safe and Your Software Fast, 2020 https://research.vu.nl/en/publications/

how-to-keep-your-memory-safe-and-your-software-fast
114	 Tjong Tjin Tai, E. and Knoops, B., Duties of care and diligence against cybercrime (Nederlands Juristenblad 24-04-

2015, volume 16), 2015.
115	 AG Connect, Veel kritieke lekken door open source in standard apps, (numerous critical leaks caused by open

source in standards apps), 2021. https://www.agconnect.nl/artikel/veel-kritieke-lekken-door-open-source-
standaard-apps

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issue
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issue
https://research.vu.nl/en/publications/how-to-keep-your-memory-safe-and-your-software-fast
https://research.vu.nl/en/publications/how-to-keep-your-memory-safe-and-your-software-fast
https://www.agconnect.nl/artikel/veel-kritieke-lekken-door-open-source-standaard-apps
https://www.agconnect.nl/artikel/veel-kritieke-lekken-door-open-source-standaard-apps

- 76 -

update the underlying component in the event of a vulnerability. By that stage, the
software package is after all dependent on a particular version of the component. In
addition, manufacturers do not always have access to the relevant knowledge to be able
to update components produced by others.116

Architecture
The fourth factor that contributes to the presence of vulnerabilities relates to the situation
when the different layers that make up the architecture of the product are mutually
inconsistent. For the functioning of the software, it is essential that the various
components that make up the software match successfully. The matching of the various
components must have been achieved in a controlled manner, under the supervision of a
person with considerable experience, and sufficient knowledge and who has a major
stake in the security of the product.117

Configuration
A last factor, which does not necessarily contribute to the emergence of vulnerabilities,
but can limit their impact, is the way in which the software is configured by the
manufacturer (the default settings). This includes which rights are granted to different
types of users, how these rights are set by default, and whether it is possible as a
customer to restrict these rights.

A range of factors contribute to the emergence of vulnerabilities during the lifecycle
of a product. In many cases, existing products undergo further development,
making the software increasingly complex. The programming language used can
also contribute to the occurrence of errors, and the use of existing components and
(inconsistent) layers in the architecture may introduce vulnerabilities.

Whenever (safety) problems are linked to fundamental choices in the product, this
can represent an obstacle for the manufacturer in tackling the root of the problem.
Such an approach after all requires an investment in the form of money and/or
capacity for problem solving. The decision by the manufacturer to instead opt to
only fix the vulnerability is explainable, but to truly solve a (safety) problem, it is
sometimes necessary to fully revise a product from the base up.

4.1.2	 Identifying vulnerabilities during the lifecycle
Manufacturers have established processes for detecting vulnerabilities during the
development and use of a product. In this section, we discuss in more detail the measures
that manufacturers can take in order to find vulnerabilities, together with the dilemmas
they can face.

116	 Tsai, O., Infiltrating Corporate Intranet Like NSA, 2020. https://i.blackhat.com/USA-19/Wednesday/us-19-Tsai-
Infiltrating-Corporate-Intranet-Like-NSA.pdf

117	 Anderson, R., Security Engineering, 2020.

https://i.blackhat.com/USA-19/Wednesday/us-19-Tsai-Infiltrating-Corporate-Intranet-Like-NSA.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Tsai-Infiltrating-Corporate-Intranet-Like-NSA.pdf

- 77 -

Action perspective of the manufacturer
Manufacturers detect vulnerabilities by carrying out a series of different tests both
before, during and following completion of the development process. For open source
software, the source code is openly available to anyone. This means that errors in the
code can be unveiled by third parties, even if they are not specifically requested to do
so. This is not possible for closed source code, and it is up to manufacturers to take the
initiative to carry out an audit.

Manufacturers can be expected to carry out constant security analyses of the entire
architecture of the product (see reference framework: the role of the manufacturer and
user in chapter 2). Manufacturers use a variety of methods for developing software, for
example the Secure Development Lifecycle (SDLC).118 Part of this involves the
manufacturers testing for vulnerabilities at various moments during the development
process (during initial development and when releasing patches). These tests are carried
out on individual components (unit testing), the integration between components
(integration testing) and on the entire product (audit119 or security code review).

By using automated tools, manufacturers are able to remove more vulnerabilities from
software. In this way, they hope to extend the lifecycle of the software. However, the
security code reviews of the entire product do not always recognize the type of
vulnerabilities relevant in this case. Vulnerabilities are not (always) the consequence of
errors in the source code, but may also be the result of integration problems within the
product. To detect vulnerabilities of this kind, the manufacturer can also opt to have the
product extensively tested for its intended functioning (end-to-end testing). Interviews
with manufacturers reveal that for older products, end-to-end testing can be very time
consuming, because older products often consist of large volumes of source code.

Manufacturers can also search for vulnerabilities without directly giving third parties
access to the source code. Many manufacturers operate bug bounty programmes,
according to which in exchange for a reward, ethical hackers search for vulnerabilities in
the software. These ethical hackers use manual search methods, firstly aiming their search
at easily identifiable vulnerabilities that are the result of fundamental design choices and
problems in the integration or configuration.

Many of these bug bounty programmes are open to anyone, but certain manufacturers
also opt for a closed variant or decide not to operate any form of bug bounty programme.
Manufacturers are sometimes also sent information about vulnerabilities from the bug
bounty programmes of other parties, such as suppliers or customers. For example, at the
time of the incident Citrix operated only a closed bug bounty programme; the company
has however recently launched an open programme.

118	 See for example https://owasp.org/www-pdf-archive/Jim_Manico_(Hamburg)_-_Securiing_the_SDLC.pdf
119	 Part of the audit performed by the manufacturer is for example threat modelling (identifying threats and mitigating

measures) and pen testing (testing for vulnerabilities and attempting to hack into the system). Pen tests can in part
be automated, but this test software can also contain vulnerabilities (see for example https://arstechnica.com/
gadgets/2021/08/critical-cobalt-strike-bug-leaves-botnet-servers-vulnerable-to-takedown/).

https://owasp.org/www-pdf-archive/Jim_Manico_(Hamburg)_-_Securiing_the_SDLC.pdf
https://arstechnica.com/gadgets/2021/08/critical-cobalt-strike-bug-leaves-botnet-servers-vulnerable-to-takedown/
https://arstechnica.com/gadgets/2021/08/critical-cobalt-strike-bug-leaves-botnet-servers-vulnerable-to-takedown/

- 78 -

Manufacturers are required to maintain an overview of their customers, those who
bought a software product (see reference framework in chapter 2). This enables the
manufacturer to warn its customers quickly, in the event of a vulnerability. Not all
manufacturers have an up-to-date overview of the customers of their products. This is
because products are not always sold directly to the customer; there are often a whole
raft of intermediaries. Interviews revealed that certain manufacturers have solved this
problem by linking contact details of the customers to their own overview, even if the
product is sold via an intermediary. From the safety perspective, it seems obvious that
manufacturers have an overview of the customers of a product. However, it may present
a dilemma that affects, among other things, the autonomy of the customer. For instance,
it is not possible to force customers to register themselves with a manufacturer and to
provide transparency on how the system is installed.

A trend that has emerged over the past few years is for manufacturers to migrate their
products to the cloud (Software as a Service) in order to improve test capability and to
install patches on their customers’ systems more quickly. This makes the patching of a
product the responsibility of the manufacturer. However, it does involve certain
disadvantages for the customer, see section 4.2.

Asymmetry: manufacturer needs to find everything; hackers need just one leak
Manufacturers have to put a lot of time and effort into detecting vulnerabilities, both
before and after the software is released. Using such techniques as end-to-end testing, it
is possible to remove many vulnerabilities from the software. However, searching for just
a single vulnerability takes a great deal of effort. In terms of prevention, manufacturers
are already doing everything they can. Problems in software that has been in use for a
longer period of time (see the development history in subsection 4.1.1) are unavoidable
given the extent of the product and the prevention paradox. It is after all not possible to
detect all vulnerabilities.

For their part, attackers attempt to find a vulnerability in a system with different methods,
for example a brute-force attack. They sometimes launch their attacks in response to
specific clues (for example using information from a CVE), but they regularly also come
across a vulnerability by coincidence. Attackers sometimes need just a single leak in
order to gain full access to a system. This reveals an imbalance between attacker and
defender (manufacturer).

Whereas in the past attackers themselves needed to search the Internet for vulnerable
servers (a time-consuming process), the use of services that scan the Internet have made
this process far easier.120 Using scan services of this kind, attackers can easily purchase a
list of IP addresses relating to a (just published) CVE. This means that after discovery of a
vulnerability attackers have immediate access to a list of potentially vulnerable servers.

120	 For example Shodan (https://www.shodan.io), a search engine that scans the Internet and indexes accessible IP
address and port combinations. If a server is indexed, then it can be approached over the Internet. This does not
automatically mean that the server is also vulnerable. That is something the hacker has to determine.

https://www.shodan.io

- 79 -

Relationship between manufacturers and ethical hackers / red teams
Ethical hackers make an important contribution to the identification of vulnerabilities.
Bug bounties (earning a reward for reporting a vulnerability) are relevant incentives in
this regard. The majority of major manufacturers operate a bug bounty programme121
that offers ethical hackers an opportunity to earn money by identifying and reporting
vulnerabilities. Finding and publishing about a specific vulnerability can also increase the
name awareness of a hacker or group of hackers. This mechanism, in combination with
the potential financial gain, means that third parties regularly go in search of and
subsequently find many vulnerabilities.

At the same time, vulnerabilities increasingly represent a potential attack route (see
subsection 4.1.3) and preventing and fixing these vulnerabilities requires tremendous
effort on the part of manufacturers (see subsection 4.1.1). In that sense, it would help the
manufacturers, and help protect systems if the vulnerabilities were kept secret. It is
possible to publish about vulnerabilities without revealing the specifics of a vulnerability.
But some manufacturers deliberately choose not to disclose all (information about the
presence of) vulnerabilities.122 This approach, however, is diametrically opposed to the
timely disclosure of information about vulnerabilities for mitigating and responding to
potential risks. There is a clear incentive for preventing information about vulnerabilities
becoming public. Disclosure makes it possible for customers to countermeasure the
consequences but at the same time leads to a new security problem: a dilemma.

Parties that discover a vulnerability do not always report their discovery to the
manufacturer. Vulnerabilities in software are a tradeable commodity, that is not only
reported to the manufacturer (sometimes in return for a reward), but that can also be
offered to the highest bidder. For state actors and criminals, obtaining a list of unknown
vulnerabilities which they themselves can subsequently exploit can prove attractive.123
Commercial spyware products are also available for sale. It is unclear whether these
products are based on unknown vulnerabilities, and it is also uncertain which parties are
offered these products, and for what purpose they are used.124

121	 For a list of bug bounty programmes, see for example https://www.bugcrowd.com/bug-bounty-list
122	 For example Palo Alto, where according to the security researcher that found the vulnerability, no CVE was

published about a vulnerability (which had in fact already been repaired by the manufacturer) in GlobalProtect.
Source: https://blog.orange.tw/2019/07/attacking-ssl-vpn-part-1-preauth-rce-on-palo-alto.html. It is unclear
whether Palo Alto communicated with their customers about the vulnerability through direct channels. The Safety
Board was unable to verify this because Palo Alto did not respond to our requests to cooperate with the
investigation.

123	 Perlroth, N., This is how they tell me the world ends: the cyberweapons arms race, 2021.
124	 https://www.wired.com/story/nso-group-hacks-ios-android-observability/
	 https://www.nrc.nl/nieuws/2021/07/26/de-overheid-moet-stoppen-met-gebruik-van-zero-day-software-a4052412

https://www.bugcrowd.com/bug-bounty-list
https://blog.orange.tw/2019/07/attacking-ssl-vpn-part-1-preauth-rce-on-palo-alto.html
https://www.wired.com/story/nso-group-hacks-ios-android-observability/
https://www.nrc.nl/nieuws/2021/07/26/de-overheid-moet-stoppen-met-gebruik-van-zero-day-software-a4052412

- 80 -

Ethical hackers are encouraged with rewards to identify and report vulnerabilities in
software. As a result, many vulnerabilities are identified. In addition, manufacturers
detect vulnerabilities by carrying out a variety of tests. Nonetheless, it is not possible
to find all vulnerabilities. It is becoming more common for vulnerabilities to form an
attack route. Disclosing a vulnerability can help organizations better arm themselves
against potential exploitation, but it can also enable attackers to exploit the
vulnerability. This is reinforced by the fact that sometimes hackers need just a single
leak in order to gain access to a system, also because it is relatively simple for them
to find vulnerable servers. This creates a dilemma which in turn reduces overall
safety.

4.1.3	 The role of vulnerabilities in cyber (in)security

Vulnerabilities are playing an ever growing role
Each year, organizations are exposed to a large and ever growing number of
vulnerabilities. In 2020, more than 25,000 vulnerabilities were identified. Of these
vulnerabilities, 18,000 were published in 2020 with a CVE number125 (see Figure 16). Only
a small proportion of the number of published vulnerabilities (around 3%) are used to
hack organizations and/or individuals. An even smaller proportion (0.5%) are successfully
used in practice to launch a widespread attack as described in the security breaches in
chapter 3 (see Figure 17). Nonetheless, numbers are growing, and experts warn that we
are just seeing the tip of the iceberg.126

0

10K

20K

1,323
1,691

1,223

1,612

6,708
6,885 7,211

5,673

5,736

4,639
4,150

5,288

5,187

7,928

6,494 6,457

14,644

16,512
17,308

18,395

Figure 16: The number of CVE reports per year. (Source: Trend Micro)

125	 There are also many vulnerabilities that are fixed by the manufacturer without disclosure. https://vulndb.
cyberriskanalytics.com/#statistics

126	 AG Connect, Einde van de oneindige reeks softwarefouten in zicht (End of an infinite series of software errors in
sight), 2021.

https://vulndb.cyberriskanalytics.com/#statistics
https://vulndb.cyberriskanalytics.com/#statistics

- 81 -

Figure 17: The number of exploits of widespread attacks in relation to the total number of reported

vulnerabilities. (Source: Trend Micro)

The consequences of these attacks are also increasing in scale. In its Cyber Security
Assessment Netherlands (CSAN) 2020, the Dutch National Coordinator for Security and
Counterterrorism (NCTV) warned of attackers searching for weak links in the supply
chain, as the next step towards attractive targets and the resultant serious
consequences.127 Whereas in the past a vulnerability in a software package did not
automatically result in serious consequences, today they can have far-reaching
consequences for the underlying dependent systems, as illustrated by the supply chain
attacks using the vulnerabilities in SolarWinds and Kaseya (see section 3.3 for a brief
analysis).

In other words, vulnerabilities such as those described in the occurrences investigated by
us are playing an ever greater role in cyber-attacks and are increasingly being used by
attackers as the starting point to launch an attack.128 Above all large organizations (such
as governments and vital operators) run the risk of being attacked according to this
target vector.129 It has become clear since 2020 that the exploitation of vulnerabilities in
software to launch ransomware attacks is an economically attractive method for
ransomware gangs.

Growing numbers of widespread attacks using a vulnerability demonstrate the
importance of the timely patching of software and/or the mitigation of a vulnerability.
The use of software introduces risks. For instance, for organizations it is not always
possible to predict which of the vulnerabilities will eventually form a risk for their
organization. This depends for example on how easy it is to actively exploit the
vulnerability in the software, whether a mitigation is available and how easily it can be

127	 NCTV, Cybersecuritybeeld Nederland 2020, 2020. https://www.ncsc.nl/documenten/publicaties/2020/juni/29/
csbn-2020

128	 Modderkolk, H., ‘Overheid doet te weinig tegen ransomware’ (Government failing to take sufficient action against
ransomware) (De Volkskrant, 4 August), 2021; CISA, Alert (AA21-209A) Top Routinely Exploited Vulnerabilities,
2021

129	 Coveware, Ransomware Attack Vectors Shift as New Software Vulnerability Exploits Abound, 2021. https://www.
coveware.com/blog/ransomware-attack-vectors-shift-as-new-software-vulnerability-exploits-abound

https://www.ncsc.nl/documenten/publicaties/2020/juni/29/csbn-2020
https://www.ncsc.nl/documenten/publicaties/2020/juni/29/csbn-2020
https://www.coveware.com/blog/ransomware-attack-vectors-shift-as-new-software-vulnerability-exploits-abound
https://www.coveware.com/blog/ransomware-attack-vectors-shift-as-new-software-vulnerability-exploits-abound

- 82 -

implemented, and the version and configuration of a product. Fixing vulnerabilities by
implementing a mitigating measure or installing patches requires an investment by the
organization. In most cases, they do not immediately get more security, in return.

For manufacturers and organizations that use the software, prevention, timely mitigation
or patching of a vulnerability do not represent the only lines of defence. Section 4.2
considers in more detail the measures that organizations can take to mitigate the safety
risks of vulnerabilities in software. Examples are the use of a firewall to restrict access to
the network, and the use of redundant hardware and software, so that when a vulnerability
is made public, it is possible to switch rapidly to another product.

Problems with patching and mitigating
If a manufacturer has placed software on the market that subsequently turns out to
contain a vulnerability, as a rule the manufacturer publishes a patch and advises
organizations to patch the software. If no patch is yet available, a manufacturer can also
publish a mitigation measure to remove the acute danger. However, patching and
mitigating are not always easily implemented solutions.

Patches and mitigations represent a certain degree of risk, too. The effect of a patch or
mitigation on software that is already configured and in use cannot always be predicted.
Every mitigation and patch can result in (partially) unforeseen consequences, for example
for the compatibility of adjacent/connected systems. In certain cases, patches can even
cause disruptions or the entire failure of systems.130 Patches and mitigations can also
introduce new errors in the software or introduce vulnerabilities, as for example was the
case with the Microsoft patch aimed at solving the problems with the print spooler, which
led to problems with printing.131

Vulnerabilities in software formed an escalation factor. The occurrences in this
investigation are clear illustrations. After the vulnerabilities had become known (for
example through the publication of a CVE or a security bulletin), attackers used
automated tools to search for servers that had not yet been patched, and to subsequently
launch attacks. A mitigation measure can also provide information about how a
vulnerability can be exploited. The occurrences in this investigation reveal that this can
take place in a period of just a few days (or that the attacks had already been carried out,
in the event of a zero day). The publication of a vulnerability can be the lead-up to
widespread attacks.

Problems with patching can also arise on the side of the user. Because of the large
number of patches published each year, it is for example not always possible to install
everything in a timely fashion. Organizations are also not always in possession of an up-
to-date overview of which software needs to be patched, they often have limited insight
into underlying (vulnerable) components contained in a software package, and they are
not always convinced of the necessity of patching. This is discussed in more detail in
section 4.2.

130	 https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/the-nightmares-of-patch-
management-the-status-quo-and-beyond

131	 https://www.zdnet.com/article/microsofts-printnightmare-patch-is-now-causing-problems-for-some-printers/

https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/the-nightmares-of-patch-management-the-status-quo-and-beyond
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/the-nightmares-of-patch-management-the-status-quo-and-beyond
https://www.zdnet.com/article/microsofts-printnightmare-patch-is-now-causing-problems-for-some-printers/

- 83 -

The release of a mitigation measure before a patch is published can be good practice,
because following its publication, organizations as a rule implement the measure without
delay. In this way, a manufacturer ensures that the end user’s software is safe. The
disadvantage is that certain organizations then consider patching to be even less
necessary.

The number of vulnerabilities in software is growing, as are the consequences of
attacks. Vulnerabilities play an increasingly important role in cyberattacks, and can
be used by attackers as the starting point for launching an attack. This underpins the
importance of timely patching. However, patching and mitigating at the same time
pose a risk, because they can lead to disruptions or the introduction of new
vulnerabilities. The organization must therefore think through the decision to patch
carefully from the perspective of the organization’s IT landscape. The publication of
a vulnerability can be the precursor to widespread attacks.

4.1.4	 Incentives for more secure software
In addition to the more intrinsic factors relating directly to the development process at
the manufacturer, other factors relating to regulation and liability also play a role in the
emergence of vulnerabilities.

At present, government and other organizations have few possibilities for requiring
software manufacturers to safeguard cybersecurity in their products. As a consequence,
problems arising from vulnerabilities largely come to lie with the user of a product. Users
must therefore be particularly aware of this fact when purchasing software. Once
purchased, users can do little more to check whether a product is safe.

Position of end users in relation to the manufacturer
Certain (large) users, such as government organizations and vital operators, are able to
use advanced software and extensive analyses to search for vulnerabilities in software,
for themselves. However, not all customers are in a position to test or reverse engineer
the software for themselves, or to autonomously perform a full risk assessment (see also
section 4.2 on information asymmetry and transparency). Interviews also reveal that not
all organizations know how to lay down and enforce requirements and hold a manufacturer
accountable. Manufacturers usually have agreements stipulate that they have limited
liability for the consequences of any vulnerabilities in software. This makes vulnerability a
problem for the user and not the manufacturer.

In addition, in the conditions they impose on the purchase and use of their software,
manufacturers prohibit users from ‘opening up’ the product to see how it works, and to
identify the components that make it up. This restriction is imposed by manufacturers
on the basis of corporate confidentiality. These agreements form obstacles to
organizations in subjecting the product to their own examination, and reporting
vulnerabilities that are found during such an examination. Finally, via their terms and

- 84 -

conditions, manufacturers specify that they cannot be held liable for the consequences
of vulnerabilities in the software.132

Statutory requirements
Besides the imposition of requirements on a software product by the users, few other
requirements are imposed by government for placing software on the market,
maintenance during the lifecycle and the role of the manufacturer during incident
management. The Wbni133 Act requires providers of essential services to take security
measures with respect to their network and information systems (e.g. reporting
cybersecurity incidents), but this does not apply to software manufacturers. The above
observation shows that in this system of parties, in particular with regard to legislation
and regulations, there is a clear shortfall on the side of the manufacturers.

National initiatives
There are a series of initiatives aimed at arriving at legislation and regulations for the
placing of software on the market. The Dutch ministry of Economic Affairs and Climate
Policy and the ministry of Justice and Security, for example, have come up with an
initiative in the form of the roadmap for Digital Hard- and Software Security (roadmap
DVHS) in which they propose a package of measures aimed at preventing security
problems in hardware and software, to detect vulnerabilities and to mitigate their
consequences.134 The measures in this roadmap are aimed both at prevention, detection
and mitigation and include statutory requirements and the imposing of liability on
manufacturers for damage suffered as a consequence of cyber insecurity. Concern for
liability should serve as an incentive for manufacturers to take preventive measures or to
limit damage. These measures are aimed specifically at smaller devices (IoT135), but are
universally applicable to other types of software. The question that emerges is to what
extent these measures should also be applied to safety-critical software and software in
general.

International initiatives
Various international governments have taken the initiative to tackle the shortcomings in
legislation and regulations. On 27 June 2019, the European Cybersecurity Act came into
effect.136 These new rules for cybersecurity among others reinforce the mandate of
ENISA137 and introduce a cybersecurity certification framework. Another recent example
of an initiative in the field of legislation is the US cyber legislation, that imposes
requirements on software purchased by government.138 Australia also has plans for

132	 Cyber Security Council (CSR), Integrated approach to cyber resilience, 2021; Tjong Tjin Tai, E. and Knoops, B.,
Duties of care and diligence against cybercrime (Nederlands Juristenblad 24-04-2015, volume 16), 2015; Anderson,
R., Security Engineering, 2020.

133	 Security of Network and Information Systems Act (Wbni) for digital service providers, see https://wetten.overheid.
nl/BWBR0041515/2021-07-01

134	 Ministry of Economic Affairs and Climate Policy and ministry of Justice and Security, Roadmap for Digital Hard-
and Software Security, 2018.

135	 Internet of Things, for example a smart TV, a smart refrigerator, connected temperature sensors, etc.
136	 https://ecer.minbuza.nl/-/europese-cyber-security-act-van-kracht;
	 https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-act
137	 Originally the European Network and Information Security Agency, currently called the European Union Agency

for Cybersecurity
138	 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-

nations-cybersecurity/,
	 https://www.nytimes.com/2021/05/12/us/politics/biden-cybersecurity-executive-order.html

https://wetten.overheid.nl/BWBR0041515/2021-07-01
https://wetten.overheid.nl/BWBR0041515/2021-07-01
https://ecer.minbuza.nl/-/europese-cyber-security-act-van-kracht
https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-act
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.nytimes.com/2021/05/12/us/politics/biden-cybersecurity-executive-order.html

- 85 -

improving the regulation of cybersecurity.139 The focus of this proposal is on IoT and
organizations processing personal information. With regard to software safety, Australia
is concentrating its efforts on stricter agreements on responsible disclosure as an
incentive for manufacturers to accelerate the patching of vulnerabilities. In China, the
exploitation of vulnerabilities is punishable by law, and sanctions are to be introduced for
manufacturers that fail to release patches for reported vulnerabilities.140

In its latest report of recommendations, the Cyber Security Council (CSR) concluded that
despite a number of important initiatives, both within the European Union and the
Netherlands, there is still no comprehensive mechanism of responsibility for hardware
and software security.141 According to the CSR, manufacturers must be held more
responsible for economic damage as a consequence of failing in their duty of care with
regard to cybersecurity. This duty of care should help protect citizens and businesses
against cybercrime.

Enforcement
If the enforcement of statutory requirements is implemented by means of certification of
software, there remains a risk of perverse effects. The certification body after all has a
business model in respect of the parties wishing to be certified, while for the certification
of its software, a software manufacturer can opt for the route of least resistance.
Competition between the different certification bodies does not always bring about
improved standards and can in fact result in a race to the bottom (the principle of
maximum complacency, whereby the manufacturer opts to have certification by a single
certifying body confirmed, and objects to any attempt to encourage it to improve its
product).142

139	 Commonwealth of Australia, Strengthening Australia’s cyber security regulations and incentives, 2021.
140	 https://therecord.media/chinese-government-lays-out-new-vulnerability-disclosure-rules/.
141	 CSR, Integrale aanpak cyberweerbaarheid (Integrated approach to cyber resilience), 2021.
142	 Anderson, R., Security Engineering, 2020.

https://therecord.media/chinese-government-lays-out-new-vulnerability-disclosure-rules/

- 86 -

Past experience: Common criteria, ISO 27001 and BitSight

Common Criteria
The Common Criteria for Information Technology is an international standard for
computer security. This standard faces a number of problems: certification costs are
high, the standard is described in generic terms (the technology has been left out,
including usability, an essential parameter for security), the standard is not capable
of responding successfully to rapid developments in practice/application, there is no
uniformity in the application of the standard (for example strict in Germany, very
loosely defined in the Netherlands) and the standard includes no elements of
liability.

ISO 27001 standard
The ISO 27001 standard143 above all works for businesses as a means of earning
money. Certification costs a great deal and is a source of income for the certification
bodies. When a company applies for a certificate, the certification body is dependent
on the information provided by the company. It is therefore possible for the applicant
to indicate that certain security measures have been taken, while they have not
actually been implemented in practice. There is no actual independent evaluation.
Almost all major leaks have occurred in companies certified according to the 27001
standard.144

BitSight
Unlike the ISO 27001 standard, a private sector initiative, BitSight is a company that
monitors the Internet in search of servers of companies and government institutions.
Any server that is discovered is scanned and awarded a security score (for example
on the basis of how many of its servers are (not) patched). As a consequence, BitSight
is not dependent on information provided by companies (the applicants in ISO
27001 certification) and arrives at a score, on the basis of its own scans. However,
this too has negative effects. For example, companies are cautious in deliberately
linking vulnerable servers to the Internet (for example for training employees,
students, etc.). As soon as servers of this kind are observed by BitSight, this has a
negative influence on the company’s security score.

Enforcement is only possible if manufacturers are required to be transparent about how
their software works, in such a way that third parties are able to assess its safety.
The Executive Order on the improvement of cybersecurity in the US focuses on this point
and identifies an urgent need for stricter and more predictable mechanisms for ensuring
that products function more safely, in accordance with their intended purpose.145

143	 An ISO standard for information security. See https://www.iso.org/isoiec-27001-information-security.html
144	 Anderson, R., Security Engineering, 2020.
145	 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-

nations-cybersecurity/

https://www.iso.org/isoiec-27001-information-security.html
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

- 87 -

Economic incentives
The examples in this investigation reveal that software products are dynamic. This is
because they are regularly updated for the addition of new functionalities and for
repairing vulnerabilities. At the same time, these products often have a long history, as
they can be built on existing components. This can make it a costly investment for
manufacturers to tackle the root causes of any insecurity, as described in section 4.1.1.
Tackling root causes would require them to rebuild software that is the result of decades
of development.

There are few economic incentives to compensate for this investment. Insurers not only
insure organizations that use software but also the manufacturers that make the software.
In this latter role, the insurers demanded of the manufacturers that they pass on liability
for the consequences of unsafe software to the actual organizations that use the software.
The Cyber Security Council writes that insurers ideally impose requirements on both the
manufacturer and the organization using software.146

A manufacturer can also experience an economic incentive if the value of its shares falls
as a result of an insecure system (shareholders). Shareholders of SolarWinds, for example,
sued the company: according to the shareholders, the private equity companies that
own SolarWinds sacrificed cybersecurity in favour of short-term profit (‘goldrush among
investors in SaaS business’).147

In addition, the material obligation to remove software insecurity can deliver an economic
incentive for a manufacturer to do more to prevent software with vulnerabilities being
placed on the market. At present, this economic incentive lies exclusively with the users
of the software.

146	 CSR, Integrale aanpak cyberweerbaarheid (Integrated approach to cyber resilience), 2021.
147	 https://www.scmagazine.com/home/solarwinds-hack/solarwinds-lawsuit-claims-private-equity-owners-sacrificed-

cybersecurity-to-boost-short-term-profits/

https://www.scmagazine.com/home/solarwinds-hack/solarwinds-lawsuit-claims-private-equity-owners-sacrificed-cybersecurity-to-boost-short-term-profits/
https://www.scmagazine.com/home/solarwinds-hack/solarwinds-lawsuit-claims-private-equity-owners-sacrificed-cybersecurity-to-boost-short-term-profits/

- 88 -

Tracing and recall in the food sector148

In the food sector, food companies are required to be able to trace to whom they
have supplied their food products. This obligation applies throughout the food
chain, from primary production (such as agriculture, livestock production and fishery)
through to the consumer who eventually eats the food. In every link of the chain, a
food company must be able to trace where the raw materials came from, and to
whom they have supplied their products. This obligation is known as traceability. If a
food company discovers that it has placed unsafe food on the market, within four
hours it must be able to compile a distribution list with all buyers149 and purchased
products, which on request is submitted to the authorities.

Food companies are also required to recall the unsafe foods on their own initiative,
or if so instructed by the authorities. In practice, it is sufficient for the authorities if a
food company restricts itself to a publication in a daily newspaper and/or on its own
website, but an ‘absolute recall’ means that the food company must warn its
customers as directly as possible, and call for them to return the products, possibly
even collecting the products itself, from the end user. This latter action is for example
carried out for recalls of passenger cars if the safety problem is so serious that the
car may no longer be used on public roads.

Regulation and liability also play a role in the occurrence of vulnerabilities.
At present, governments and other organizations have few possibilities for obliging
manufacturers to safeguard cybersecurity in their products. Users do not always
know how to impose requirements, and force manufacturers to show accountability.
This makes vulnerability a problem for the user and not the manufacturer.

There are practically no rules for placing software on the market. The current free
market for software products imposes almost no requirements on the sound
management of security risks. Identifying vulnerabilities is a time-consuming task,
that demands much manpower and as a consequence is costly. In certain cases it
can be necessary to completely rebuild a product in order to tackle the underlying
(safety) problem. The absence of economic incentives explains why manufacturers at
present do not consider this option.

148	 Based on the idea that there is a chain from producer to consumer via a number of intermediate steps, the
compulsory traceability for every company in the food sector applies one step back and one step forward in the
chain (excluding the step to the end user or consumer). Source: Article 18(1) of Regulation (EC) no. 178/2002 in:
Guidelines for the enforcement of Articles 11, 12, 14, 17, 18, 19 and 20 of (EC) Regulation no. 178/2002 laying down
the general principles and requirements of food law (26 January 2010).

149	 For the last link (the end user or consumer), the tracing obligation does not apply, but certain retailers do record
(some) deliveries to consumers (online orders, customer loyalty cards, etc.).

	Summary
	Consideration
	Recommendations
	Abbreviations and definitions
	1 Introduction
	1.1	Background
	1.2	Objective
	1.3	Investigation questions
	1.4	Scope and focus of the investigation
	1.5	Investigation approach
	1.6	Reference framework
	1.7	Contents and reading guide

	2 Relevant Concepts explained
	2.1	(Digital) system
	2.2	Vulnerabilities and security breaches
	2.3	Attackers and their methods
	2.4	Safety and security, consequences, prevention and response
	2.5	Safety chain and risk management in the (cyber) incidents
	2.6	System
	3 Software vulnerabilities and their consequences: course of events and analysis

	3.1	Vulnerability in Citrix software and security breaches
	3.2	Analysis of the occurrence involving Citrix software
	3.3	Course of events of other illustrative occurrences

	4 System analysis
	4.1	Producing and releasing software on the market
	4.2	The purchase and use of software by organizations
	4.3	Incident management (response)
	4.4	Learning from digital incidents
	4.5	Policy and the international context

	5 Conclusions
	5.1	Producing and releasing software on the market
	5.2	The purchase and use of software by organizations
	5.3	Incident management
	5.4	Learning from occurrences

	6 Recommendations

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

